Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.858
1.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580957

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Extracellular Matrix Proteins , Heart Failure , Ventricular Function, Left , Animals , Rats , Heart Failure/genetics , Heart Failure/metabolism , Rats, Sprague-Dawley , Signal Transduction , Stroke Volume , Proteoglycans/genetics , Proteoglycans/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism
2.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672477

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
3.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673852

One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.


Extracellular Matrix Proteins , Mice, Knockout , Spinal Cord Injuries , Spinal Cord , Animals , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Mice , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Neuronal Plasticity , Motor Neurons/metabolism , Nerve Net/metabolism , Male , Proteoglycans/metabolism , Proteoglycans/genetics , Mice, Inbred C57BL
4.
J Physiol ; 602(9): 1939-1951, 2024 May.
Article En | MEDLINE | ID: mdl-38606903

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Atherosclerosis , Inflammation , Mice, Knockout , Proteoglycans , Receptors, LDL , Recombinant Proteins , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Female , Proteoglycans/pharmacology , Proteoglycans/metabolism , Proteoglycans/genetics , Receptors, LDL/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Mice , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Macrophages/metabolism , Macrophages/drug effects , Foam Cells/metabolism , Foam Cells/drug effects
5.
J Matern Fetal Neonatal Med ; 37(1): 2332914, 2024 Dec.
Article En | MEDLINE | ID: mdl-38522947

BACKGROUND: Bronchopulmonary dysplasia (BPD) has a lasting effect on the respiratory function of infants, imposing chronic health burdens. BPD is influenced by various prenatal, postnatal, and genetic factors. This study explored the connection between BPD and home oxygen therapy (HOT), and then we examined the association between HOT and a specific single-nucleotide polymorphism (SNP) in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene among premature Japanese infants. MATERIALS AND METHODS: Prenatal and postnatal data from 212 premature infants were collected and analyzed by four SNPs (rs975563, rs10942332, rs179851, and rs4703570) around HAPLN1 using the TaqMan polymerase chain reaction method. The clinical characteristics and genotype frequencies of HAPLN1 were assessed and compared between HOT and non-HOT groups. RESULTS: Individuals with AA/AC genotypes in the rs4703570 SNP exhibited significantly higher HOT rates at discharge than those with CC homozygotes (odds ratio, 1.20, 95% confidence interval, 1.07-1.35, p = .038). A logistic regression analysis determined that CC homozygotes in the rs4703570 SNP did not show a statistically significant independent association with HOT at discharge. CONCLUSIONS: Although our study did not reveal a correlation between HAPLN1 and the onset of BPD, we observed that individuals with CC homozygosity at the rs4703570 SNP exhibit a reduced risk of HOT.


Bronchopulmonary Dysplasia , Extracellular Matrix Proteins , Hyaluronic Acid , Infant, Newborn , Infant , Female , Humans , Pregnancy , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/therapy , Japan , Infant, Premature , Proteoglycans/genetics , Oxygen
6.
Hum Mol Genet ; 33(5): 448-464, 2024 Feb 18.
Article En | MEDLINE | ID: mdl-37975905

Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.


Proteoglycans , Retinitis Pigmentosa , Humans , Animals , Mice , Adult , Proteoglycans/genetics , Retina , Mutation , Retinitis Pigmentosa/genetics , Disease Progression
7.
Am J Ophthalmol ; 258: 32-42, 2024 Feb.
Article En | MEDLINE | ID: mdl-37806544

PURPOSE: To investigate the phenotype, variability, and penetrance of IMPG2-related maculopathy. DESIGN: Retrospective observational case series. METHODS: Clinical evaluation, multimodal retinal imaging, genetic testing, and molecular modeling. RESULTS: A total of 25 individuals with a mono-allelic IMPG2 variant were included, 5 of whom were relatives of patients with IMPG2-associated retinitis pigmentosa. A distinct maculopathy was present in 17 individuals (median age, 52 years; range, 20-72 years), and included foveal elevation with or without subretinal vitelliform material or focal atrophy of the retinal pigment epithelium. Best-corrected visual acuity (BCVA) was ≥20/50 in the better eye (n = 15), and 5 patients were asymptomatic. Longitudinal observation (n = 8, up to 19 years) demonstrated stable maculopathy (n = 3), partial/complete resorption (n = 4) or increase (n = 1) of the subretinal material, with overall stable vision (n = 6). No manifest maculopathy was observed in 8 individuals (median age, 58 years; range, 43-83 years; BCVA ≥20/25), all were identified through segregation analysis. All 8 individuals were asymptomatic, with minimal foveal changes observed on optical coherence tomography in 3 cases. A total of 18 different variants were detected, 11 of them truncating. Molecular modeling of 5 missense variants [c.727G>C, c.1124C>A, c.2816T>A, c.3047T>C, and c.3193G>A] supported the hypothesis that these have a loss-of-function effect. CONCLUSIONS: Mono-allelic IMPG2 variants may result in haploinsufficiency manifesting as a maculopathy with variable penetrance and expressivity. Family members of patients with IMPG2-related retinitis pigmentosa may present with vitelliform lesions. The maculopathy often remains limited to the fovea and is usually associated with moderate visual impairment.


Macular Degeneration , Retinal Diseases , Retinitis Pigmentosa , Humans , Middle Aged , Fluorescein Angiography , Macular Degeneration/genetics , Proteoglycans/genetics , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retrospective Studies , Tomography, Optical Coherence , Visual Acuity
8.
Eur J Ophthalmol ; 34(2): NP1-NP4, 2024 Mar.
Article En | MEDLINE | ID: mdl-37661650

INTRODUCTION: Adult-onset vitelliform macular dystrophy (AVMD) is an inherited maculopathy characterized by metamorphopsias and decrease in visual acuity occurring between the fourth and the sixth decade. It is characterized by an 'egg yolk' macular lesion eventually evolving towards foveal atrophy and fibrosis. It is usually an autosomal dominant inherited disorder with variable penetrance, mainly related to variants in BEST1, PRPH2, IMPG1, and IMPG2 genes. CASE DESCRIPTION: A 47-year-old woman complaining of "wavy" vision was referred to our clinic. Her past medical history and reported family history did not reveal any ocular disease. Complete ophthalmological evaluation was performed. Funduscopic examination and multimodal imaging revealed a round vitelliform lesion in both eyes, leading to a diagnosis of AVMD. Genetic analysis revealed a novel, likely pathogenetic, heterozygous c.478G > T (p.Glu160Ter), (NM_016247) variant in the IMPG2 gene. DISCUSSION: Our patient exhibits a novel pathogenetic variant in a gene associated with AVMD. Heterozygous variants in the IMPG2 gene have been reported in multiple individuals with vitelliform macular dystrophy, with an autosomal dominant mode of inheritance. Genetic screening is essential to characterize patients, to predict vision loss in patients with a positive family history and to characterize eligible patients for new potential emerging therapies. Genotype-phenotype correlation studies are needed to have a clearer picture of pathogenetic mechanisms. Our study characterizes the phenotype related to a novel IMPG2 pathogenic variant through multimodal imaging.


Vitelliform Macular Dystrophy , Female , Humans , Middle Aged , Bestrophins/genetics , Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Genetic Testing , Mutation , Phenotype , Proteoglycans/genetics , Retina/pathology , Tomography, Optical Coherence , Vision Disorders , Vitelliform Macular Dystrophy/diagnosis , Vitelliform Macular Dystrophy/genetics
9.
Development ; 151(2)2024 Jan 15.
Article En | MEDLINE | ID: mdl-38117077

During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.


Osteogenesis , Proteoglycans , Animals , Osteogenesis/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , Zebrafish/genetics , Cartilage/metabolism , Chondrocytes/metabolism , Bone Morphogenetic Proteins/metabolism
10.
World J Surg Oncol ; 21(1): 312, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37779184

BACKGROUND: Colorectal cancer is one of the most common malignant tumors worldwide with high morbidity and mortality. This study aimed to identify different methylation sites as new methylation markers in CRC and colorectal adenoma through tissue detection. METHODS: DNA extraction and bisulfite modification as well as Infinium 450K methylation microarray detection were performed in 46 samples of sporadic colorectal cancer tissue, nine samples of colorectal adenoma, and 20 normal samples, and bioinformatic analysis was conducted involving genes enrichments of GO and KEGG. Pyrosequencing methylation detection was further performed in 68 sporadic colorectal cancer tissues, 31 samples of colorectal adenoma, and 49 normal colorectal mucosae adjacent to carcinoma to investigate the differentially methylated genes obtained from methylation microarray. RESULTS: There were 65,535 differential methylation marker probes, among which 25,464 were hypermethylated markers and 40,071 were hypomethylated markers in the adenoma compared with the normal group, and 395,571 were differentially methylated markers in patients with sporadic colorectal cancer compared with the normal group, including 21,710 hypermethylated markers and 17,861 hypomethylated markers. Five hypermethylated genes including ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were detected and confirmed in 68 cases of colorectal cancer, 31 cases of adenoma, and 49 cases of normal control group. CONCLUSIONS: Hypermethylated genes of ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were obtained from methylation chip detection and further confirm analysis in colorectal cancer and adenoma compared with normal tissue, which may be promising diagnostic markers of colorectal cancer and colorectal adenoma.


Adenoma , Colorectal Neoplasms , Humans , DNA Methylation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CpG Islands , Early Detection of Cancer , Colorectal Neoplasms/pathology , Adenoma/genetics , Adenoma/pathology , Cytoskeletal Proteins/genetics , Cell Adhesion Molecules/genetics , Proteoglycans/genetics , Endonucleases/genetics , Otx Transcription Factors/genetics
11.
Chem Biol Drug Des ; 102(6): 1421-1434, 2023 12.
Article En | MEDLINE | ID: mdl-37620132

Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor ß receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.


Cell-Penetrating Peptides , Male , Humans , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism , Cell Line, Tumor
12.
Poult Sci ; 102(10): 102916, 2023 Oct.
Article En | MEDLINE | ID: mdl-37499613

This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet of broilers on the expression of matrix metallopeptidase 9 (MMP-9) and metallopeptidase inhibitor 2 (TIMP-2) genes, the synthesis of proteoglycans, collagen type II and chondrocytes, bone and cartilage macroscopy, bone mineral densitometry, bone breaking strength and mineral profile. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate: 0.00, 0.05, and 0.10%; and 3 levels of glucosamine sulfate: 0.00, 0.15, and 0.30%), totaling 9 treatments. At 21 and 42 d of age, broilers were slaughtered, and tibias and femurs were collected for evaluation. There was an interaction (P < 0.05) of sulfates for the expression of MMP-9 and its inhibitor TIMP-2 in femur articular cartilage, as well as for the number of chondrocytes, collagen type II and proteoglycans in tibia articular cartilage, bone and cartilage macroscopy and mineral profile (P < 0.05), with better results obtained with the inclusion of chondroitin and/or glucosamine sulfates in the feed. In conclusion, chondroitin and glucosamine sulfates can be used in broiler diets in order to favor the development of the structure of the locomotor system (bones and joints), thus preventing locomotion problems.


Cartilage, Articular , Glycosaminoglycans , Animals , Glycosaminoglycans/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/pharmacology , Chickens , Collagen Type II/metabolism , Collagen Type II/pharmacology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Proteoglycans/genetics , Proteoglycans/metabolism , Chondroitin Sulfates/metabolism , Chondroitin Sulfates/pharmacology , Glucosamine/metabolism , Glucosamine/pharmacology , Minerals/metabolism , Sulfates/metabolism
13.
Cell Tissue Res ; 394(1): 93-105, 2023 Oct.
Article En | MEDLINE | ID: mdl-37470839

Photoreceptor outer segments are surrounded by a carbohydrate-rich matrix, the interphotoreceptor matrix, necessary for physiological retinal function. Few roles for molecules characterizing the interphotoreceptor matrix have been clearly defined. Recent studies have found the presence of nonsense mutations in the interphotoreceptor matrix proteoglycan 2 (IMPG2) gene in patients affected by retinal dystrophies. IMPG2 encodes for a proteoglycan synthesized by photoreceptors and secreted in the interphotoreceptor matrix. Little is known about the structure and function of this protein, we thus decided to characterize zebrafish impg2. In zebrafish there are two Impg2 proteins, Impg2a and Impg2b. We generated a phylogenetic tree based on IMPG2 protein sequence similarity among vertebrates, showing a significant similarity between humans and teleosts. The human and zebrafish proteins share conserved domains, as also shown by homology models. Expression analyses of impg2a and impg2b show a continued expression in the photoreceptor layer starting from developmental stages and continuing through adulthood. Between 1 and 6 months post-fertilization, there is a significant shift of Impg2 expression toward the outer segment region, suggesting an increase in secretion. This raises intriguing hypotheses about its possible role(s) during retinal maturation, laying the groundwork for the generation of most needed models for the study of IMPG2-related inherited retinal dystrophies.


Proteoglycans , Retinal Dystrophies , Animals , Humans , Proteoglycans/genetics , Proteoglycans/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Phylogeny , Retina/metabolism
14.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37298583

Cleft palate is one of the most common birth defects. Previous studies revealed that multiple factors, including impaired intracellular or intercellular signals, and incoordination of oral organs led to cleft palate, but were little concerned about the contribution of the extracellular matrix (ECM) during palatogenesis. Proteoglycans (PGs) are one of the important macromolecules in the ECM. They exert biological functions through one or more glycosaminoglycan (GAG) chains attached to core proteins. The family with sequence similarity 20 member b (Fam20b) are newly identified kinase-phosphorylating xylose residues that promote the correct assembly of the tetrasaccharide linkage region by creating a premise for GAG chain elongation. In this study, we explored the function of GAG chains in palate development through Wnt1-Cre; Fam20bf/f mice, which exhibited complete cleft palate, malformed tongue, and micrognathia. In contrast, Osr2-Cre; Fam20bf/f mice, in which Fam20b was deleted only in palatal mesenchyme, showed no abnormality, suggesting that failed palatal elevation in Wnt1-Cre; Fam20bf/f mice was secondary to micrognathia. In addition, the reduced GAG chains promoted the apoptosis of palatal cells, primarily resulting in reduced cell density and decreased palatal volume. The suppressed BMP signaling and reduced mineralization indicated an impaired osteogenesis of palatine, which could be rescued partially by constitutively active Bmpr1a. Together, our study highlighted the key role of GAG chains in palate morphogenesis.


Cleft Palate , Micrognathism , Animals , Mice , Catalysis , Cleft Palate/genetics , Cleft Palate/metabolism , Gene Expression Regulation, Developmental , Glycosaminoglycans/metabolism , Mesoderm/metabolism , Micrognathism/metabolism , Neural Crest/metabolism , Palate/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism
15.
J Neurosci ; 43(24): 4405-4417, 2023 06 14.
Article En | MEDLINE | ID: mdl-37188512

Although NG2 is known to be selectively expressed in oligodendrocyte precursor cells (OPCs) for many years, its expressional regulation and functional involvement in oligodendrocyte differentiation have remained elusive. Here, we report that the surface-bound NG2 proteoglycan can physically bind to PDGF-AA and enhances PDGF receptor alpha (PDGFRα) activation of downstream signaling. During differentiation stage, NG2 protein is cleaved by A disintegrin and metalloproteinase with thrombospondin motifs type 4 (Adamts4), which is highly upregulated in differentiating OPCs but gradually downregulated in mature myelinating oligodendrocytes. Genetic ablation of Adamts4 gene impedes NG2 proteolysis, leading to elevated PDGFRα signaling but impaired oligodendrocyte differentiation and axonal myelination in both sexes of mice. Moreover, Adamts4 deficiency also lessens myelin repair in adult brain tissue following Lysophosphatidylcholine-induced demyelination. Thus, Adamts4 could be a potential therapeutic target for enhancing oligodendrocyte differentiation and axonal remyelination in demyelinating diseases.SIGNIFICANCE STATEMENT NG2 is selectively expressed in OPCs and downregulated during differentiation stage. To date, the molecular mechanism underlying the progressive removal of NG2 surface proteoglycan in differentiating OPCs has been unknown. In this study, we demonstrate that ADAMTS4 released by differentiating OPCs cleaves surface NG2 proteoglycan, attenuates PDGFRα signaling, and accelerates oligodendrocyte differentiation. In addition, our study also suggests ADAMTS4 as a potential therapeutic target for promoting myelin recovery in demyelinating diseases.


Demyelinating Diseases , Remyelination , Male , Female , Mice , Animals , Receptor, Platelet-Derived Growth Factor alpha , Myelin Sheath/metabolism , Proteoglycans/genetics , Oligodendroglia/metabolism , Cell Differentiation/physiology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism
16.
J Cancer Res Clin Oncol ; 149(11): 9191-9200, 2023 Sep.
Article En | MEDLINE | ID: mdl-37188984

OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) represents a widespread form of malignant pancreatic neoplasms and a leading oncologic cause of death in Europe and the USA. Despite advances in understanding its molecular biology, the 5-year survival rate remains low at 10%. The extracellular matrix in PDAC contains proteins, including SPOCK2, which are essential for tumorigenicity and drug resistance. The present study aims to explore the possible role of SPOCK2 in the pathogenesis of PDAC. MATERIALS AND METHODS: Expression of SPOCK2 was evaluated in 7 PDAC cell lines and 1 normal pancreatic cell line using quantitative RT-PCR. Demethylation of the gene was carried out using 5-aza-2'-deoxycytidine (5-aza-dC) treatment with subsequent validation Western Blot analysis. In vitro downregulation of SPOCK2 gene was performed using siRNA transfection. MTT and transwell assays were employed to evaluate the impact of the SPOK2 demethylation on the proliferation and migration of PDAC cells. KM Plotter was applied to analyze a correlation between SPOCK2 mRNA expression and the survival of PDAC patients. RESULTS: In contrast to the normal pancreatic cell line, SPOCK2 expression was significantly downregulated in PDAC cell lines. Treatment with 5-aza-dC, led to increase in SPOCK2 expression in the cell lines tested. Importantly, compared with control cells, transfected with SPOCK2 siRNA cells exhibited increased growth rates and more migration ability. Finally, we demonstrated that a high SPOCK2 expression level correlated with longer overall survival of patients with PDAC. CONCLUSION: The expression of SPOCK2 is downregulated in PDAC as a result of hypermethylation of its corresponding gene. SPOCK2 expression as well as the demethylation of its gene could be a potential marker for PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Prognosis , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Gene Expression , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , Proteoglycans/therapeutic use , Pancreatic Neoplasms
17.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article En | MEDLINE | ID: mdl-37175670

The calcification of the aortic valve causes increased leaflet stiffness and leads to the development and progression of stenotic aortic valve disease. However, the molecular and cellular mechanisms underlying stenotic calcification remain poorly understood. Herein, we examined the gene expression associated with valve calcification and the progression of calcific aortic valve stenosis. We downloaded two publicly available gene expression profiles (GSE83453 and GSE51472) from NCBI-Gene Expression Omnibus database for the combined analysis of samples from human aortic stenosis and normal aortic valve tissue. After identifying the differentially expressed genes (DEGs) using the GEO2R online tool, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We also analyzed the protein-protein interactions (PPIs) of the DEGs using the NetworkAnalyst online tool. We identified 4603 upregulated and 6272 downregulated DEGs, which were enriched in the positive regulation of cell adhesion, leukocyte-mediated immunity, response to hormones, cytokine signaling in the immune system, lymphocyte activation, and growth hormone receptor signaling. PPI network analysis identified 10 hub genes: VCAM1, FHL2, RUNX1, TNFSF10, PLAU, SPOCK1, CD74, SIPA1L2, TRIB1, and CXCL12. Through bioinformatic analysis, we identified potential biomarkers and therapeutic targets for aortic stenosis, providing a theoretical basis for future studies.


Aortic Valve Stenosis , Gene Expression Profiling , Humans , Transcriptome , Aortic Valve Stenosis/genetics , Signal Transduction/genetics , Computational Biology , Gene Regulatory Networks , Proteoglycans/genetics , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics
18.
BMC Genomics ; 24(1): 163, 2023 Apr 03.
Article En | MEDLINE | ID: mdl-37013486

BACKGROUND: Epithelium-mesenchymal interactions are involved in odontogenic processes. Previous studies have focused on the intracellular signalling regulatory network in tooth development, but the functions of extracellular regulatory molecules have remained unclear. This study aims to explore the gene profile of extracellular proteoglycans and their glycosaminoglycan chains potentially involved in dental epithelium-mesenchymal interactions using high-throughput sequencing to provide new understanding of early odontogenesis. RESULTS: Whole transcriptome profiles of the mouse dental epithelium and mesenchyme were investigated by RNA sequencing (RNA-seq). A total of 1,281 and 1,582 differentially expressed genes were identified between the dental epithelium and mesenchyme at E11.5 and E13.5, respectively. Enrichment analysis showed that extracellular regions and ECM-receptor interactions were significantly enriched at both E11.5 and E13.5. Polymerase chain reaction analysis confirmed that the extracellular proteoglycan family exhibited distinct changes during epithelium-mesenchymal interactions. Most proteoglycans showed higher transcript levels in the dental mesenchyme, whereas only a few were upregulated in the epithelium at both stages. In addition, 9 proteoglycans showed dynamic expression changes between these two tissue compartments. Gpc4, Sdc2, Spock2, Dcn and Lum were expressed at higher levels in the dental epithelium at E11.5, whereas their expression was significantly higher in the dental mesenchyme at E13.5, which coincides with the odontogenic potential shift. Moreover, the glycosaminoglycan biosynthetic enzymes Ext1, Hs3st1/5, Hs6st2/3, Ndst3 and Sulf1 also exhibited early upregulation in the epithelium but showed markedly higher expression in the mesenchyme after the odontogenic potential shift. CONCLUSION: This study reveals the dynamic expression profile of extracellular proteoglycans and their biosynthetic enzymes during the dental epithelium-mesenchymal interaction. This study offers new insight into the roles of extracellular proteoglycans and their distinct sulfation underlying early odontogenesis.


Odontogenesis , Tooth , Mice , Animals , Epithelium/metabolism , Odontogenesis/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , Signal Transduction , Glycosaminoglycans/metabolism
19.
Int J Mol Sci ; 24(8)2023 Apr 07.
Article En | MEDLINE | ID: mdl-37108048

Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.


Adipose Tissue , Proteoglycans , Female , Humans , Male , Animals , Mice , Proteoglycans/genetics , Proteoglycans/metabolism , Adipose Tissue/metabolism , Obesity/genetics , Obesity/metabolism , Subcutaneous Fat/metabolism , Adiposity , Extracellular Matrix Proteins/metabolism , Diet, High-Fat/adverse effects
20.
Article En | MEDLINE | ID: mdl-36963805

Osteogenesis imperfecta (OI) is a heritable disorder of bone metabolism characterized by multiple fractures with minimal trauma. Autosomal recessive OI type VIII is associated with biallelic pathogenic variants in P3H1 and classically characterized by skeletal anomalies in addition to significant bone fragility, sometimes presenting with in utero fractures and/or neonatal lethality. P3H1 encodes a collagen prolyl hydroxylase that critically 3-hydroxylates proline residue 986 on the α chain of collagen types I and II to achieve proper folding and assembly of mature collagen and is present in a complex with CRTAP and CypB. Most individuals with OI type VIII have had biallelic predicted loss-of-function variants leading to reduced or absent levels of P3H1 mRNA. The reported missense variants have all fallen in the catalytic domain of the protein and are thought to be associated with a milder phenotype. Here, we describe an infant presenting with five long bone fractures in the first year of life found to have a novel missense variant in trans with a nonsense variant in P3H1 without any other bony anomalies on imaging. We hypothesize that missense variants in the catalytic domain of P3H1 lead to decreased but not absent hydroxylation of Pro986, with preserved KDEL retention signal and complex stability, causing an attenuated phenotype.


Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Extracellular Matrix Proteins/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , Molecular Chaperones/genetics , Collagen/genetics , Collagen/chemistry , Collagen/metabolism , Phenotype , Mutation
...